Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(13): 8981-8990, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38513269

ABSTRACT

The rapid development of antibiotic resistance, especially among difficult-to-treat Gram-negative bacteria, is recognized as a serious and urgent threat to public health. The detection and characterization of novel resistance mechanisms are essential to better predict the spread and evolution of antibiotic resistance. Corramycin is a novel and modified peptidic antibiotic with activity against several Gram-negative pathogens. We demonstrate that the kinase ComG, part of the corramycin biosynthetic gene cluster, phosphorylates and thereby inactivates corramycin, leading to the resistance of the host. Remarkably, we found that the closest structural homologues of ComG are aminoglycoside phosphotransferases; however, ComG shows no activity toward this class of antibiotics. The crystal structure of ComG in complex with corramycin reveals that corramycin adopts a ß-hairpin-like structure and allowed us to define the changes leading to a switch in substrate from sugar to peptide. Bioinformatic analyses suggest a limited occurrence of ComG-like proteins, which along with the absence of cross-resistance to clinically used drugs positions corramycin as an attractive antibiotic for further development.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria/metabolism , Kanamycin Kinase/chemistry , Kanamycin Kinase/genetics , Kanamycin Kinase/metabolism , Peptides
2.
Nat Commun ; 15(1): 791, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278788

ABSTRACT

DNA polymerase III sliding clamp (DnaN) was recently validated as a new anti-tuberculosis target employing griselimycins. Three (2 S,4 R)-4-methylproline moieties of methylgriselimycin play significant roles in target binding and metabolic stability. Here, we identify the mycoplanecin biosynthetic gene cluster by genome mining using bait genes from the 4-methylproline pathway. We isolate and structurally elucidate four mycoplanecins comprising scarce homo-amino acids and 4-alkylprolines. Evaluating mycoplanecin E against Mycobacterium tuberculosis surprisingly reveals an excitingly low minimum inhibition concentration at 83 ng/mL, thus outcompeting griselimycin by approximately 24-fold. We show that mycoplanecins bind DnaN with nanomolar affinity and provide a co-crystal structure of mycoplanecin A-bound DnaN. Additionally, we reconstitute the biosyntheses of the unusual L-homoleucine, L-homonorleucine, and (2 S,4 R)-4-ethylproline building blocks by characterizing in vitro the full set of eight enzymes involved. The biosynthetic study, bioactivity evaluation, and drug target validation of mycoplanecins pave the way for their further development to tackle multidrug-resistant mycobacterial infections.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mycobacterium tuberculosis/metabolism , DNA Polymerase III/metabolism , Microbial Sensitivity Tests
3.
Bioinform Adv ; 3(1): vbad167, 2023.
Article in English | MEDLINE | ID: mdl-38145107

ABSTRACT

Motivation: Compared to eukaryotes, prokaryote genomes are more diverse through different mechanisms, including a higher mutation rate and horizontal gene transfer. Therefore, using a linear representative reference can cause a reference bias. Graph-based pangenome methods have been developed to tackle this problem. However, comparisons in DNA space are still challenging due to this high diversity. In contrast, amino acid sequences have higher similarity due to evolutionary constraints, whereby a single amino acid may be encoded by several synonymous codons. Coding regions cover the majority of the genome in prokaryotes. Thus, panproteomes present an attractive alternative leveraging the higher sequence similarity while not losing much of the genome in non-coding regions. Results: We present PanPA, a method that takes a set of multiple sequence alignments of protein sequences, indexes them, and builds a graph for each multiple sequence alignment. In the querying step, it can align DNA or amino acid sequences back to these graphs. We first showcase that PanPA generates correct alignments on a panproteome from 1350 Escherichia coli. To demonstrate that panproteomes allow comparisons at longer phylogenetic distances, we compare DNA and protein alignments from 1073 Salmonella enterica assemblies against E.coli reference genome, pangenome, and panproteome using BWA, GraphAligner, and PanPA, respectively; with PanPA aligning around 22% more sequences. We also aligned a DNA short-reads whole genome sequencing (WGS) sample from S.enterica against the E.coli reference with BWA and the panproteome with PanPA, where PanPA was able to find alignment for 68% of the reads compared to 5% with BWA. Availalability and implementation: PanPA is available at https://github.com/fawaz-dabbaghieh/PanPA.

4.
BMC Microbiol ; 23(1): 404, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38124060

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) poses a significant global health threat, and an accurate prediction of bacterial resistance patterns is critical for effective treatment and control strategies. In recent years, machine learning (ML) approaches have emerged as powerful tools for analyzing large-scale bacterial AMR data. However, ML methods often ignore evolutionary relationships among bacterial strains, which can greatly impact performance of the ML methods, especially if resistance-associated features are attempted to be detected. Genome-wide association studies (GWAS) methods like linear mixed models accounts for the evolutionary relationships in bacteria, but they uncover only highly significant variants which have already been reported in literature. RESULTS: In this work, we introduce a novel phylogeny-related parallelism score (PRPS), which measures whether a certain feature is correlated with the population structure of a set of samples. We demonstrate that PRPS can be used, in combination with SVM- and random forest-based models, to reduce the number of features in the analysis, while simultaneously increasing models' performance. We applied our pipeline to publicly available AMR data from PATRIC database for Mycobacterium tuberculosis against six common antibiotics. CONCLUSIONS: Using our pipeline, we re-discovered known resistance-associated mutations as well as new candidate mutations which can be related to resistance and not previously reported in the literature. We demonstrated that taking into account phylogenetic relationships not only improves the model performance, but also yields more biologically relevant predicted most contributing resistance markers.


Subject(s)
Bacterial Infections , Mycobacterium tuberculosis , Tuberculosis , Humans , Phylogeny , Mycobacterium tuberculosis/genetics , Genome-Wide Association Study , Drug Resistance, Microbial/genetics , Machine Learning
5.
Nat Rev Drug Discov ; 22(11): 895-916, 2023 11.
Article in English | MEDLINE | ID: mdl-37697042

ABSTRACT

Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to exciting developments in the computational drug design field, facilitating biological activity prediction and de novo drug design for molecular targets of interest. Here, we describe current and future synergies between these developments to effectively identify drug candidates from the plethora of molecules produced by nature. We also discuss how to address key challenges in realizing the potential of these synergies, such as the need for high-quality datasets to train deep learning algorithms and appropriate strategies for algorithm validation.


Subject(s)
Artificial Intelligence , Biological Products , Humans , Algorithms , Machine Learning , Drug Discovery , Drug Design , Biological Products/pharmacology
6.
Nat Chem ; 15(4): 560-568, 2023 04.
Article in English | MEDLINE | ID: mdl-36894702

ABSTRACT

Ribosomally synthesized and post-translationally modified peptide natural products have provided many highly unusual scaffolds. This includes the intriguing alkaloids crocagins, which possess a tetracyclic core structure and whose biosynthesis has remained enigmatic. Here we use in vitro experiments to demonstrate that three proteins, CgnB, CgnC and CgnE, are sufficient for the production of the hallmark tetracyclic crocagin core from the precursor peptide CgnA. The crystal structures of the homologues CgnB and CgnE reveal them to be the founding members of a peptide-binding protein family and allow us to rationalize their distinct functions. We further show that the hydrolase CgnD liberates the crocagin core scaffold, which is subsequently N-methylated by CgnL. These insights allow us to propose a biosynthetic scheme for crocagins. Bioinformatic analyses based on these data led to the discovery of related biosynthetic pathways that may provide access to a structurally diverse family of peptide-derived pyrroloindoline alkaloids.


Subject(s)
Proteins , Protein Binding , Proteins/chemistry , Proteins/metabolism , Alkaloids/chemistry , Alkaloids/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Zinc/chemistry , Zinc/metabolism , Protein Multimerization , Models, Molecular , Protein Structure, Tertiary , Protein Structure, Quaternary , Biocatalysis
7.
J Cheminform ; 15(1): 37, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36959676

ABSTRACT

Glycans are important polysaccharides on cellular surfaces that are bound to glycoproteins and glycolipids. These are one of the most common post-translational modifications of proteins in eukaryotic cells. They play important roles in protein folding, cell-cell interactions, and other extracellular processes. Changes in glycan structures may influence the course of different diseases, such as infections or cancer. Glycans are commonly represented using the IUPAC-condensed notation. IUPAC-condensed is a textual representation of glycans operating on the same topological level as the Symbol Nomenclature for Glycans (SNFG) that assigns colored, geometrical shapes to the main monomers. These symbols are then connected in tree-like structures, visualizing the glycan structure on a topological level. Yet for a representation on the atomic level, notations such as SMILES should be used. To our knowledge, there is no easy-to-use, general, open-source, and offline tool to convert the IUPAC-condensed notation to SMILES. Here, we present the open-access Python package GlyLES for the generalizable generation of SMILES representations out of IUPAC-condensed representations. GlyLES uses a grammar to read in the monomer tree from the IUPAC-condensed notation. From this tree, the tool can compute the atomic structures of each monomer based on their IUPAC-condensed descriptions. In the last step, it merges all monomers into the atomic structure of a glycan in the SMILES notation. GlyLES is the first package that allows conversion from the IUPAC-condensed notation of glycans to SMILES strings. This may have multiple applications, including straightforward visualization, substructure search, molecular modeling and docking, and a new featurization strategy for machine-learning algorithms. GlyLES is available at https://github.com/kalininalab/GlyLES .

8.
Bioinformatics ; 39(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36825843

ABSTRACT

MOTIVATION: Bloom filters are a popular data structure that allows rapid searches in large sequence datasets. So far, all tools work with nucleotide sequences; however, protein sequences are conserved over longer evolutionary distances, and only mutations on the protein level may have any functional significance. RESULTS: We present MetaProFi, a Bloom filter-based tool that, for the first time, offers the functionality to build indexes of amino acid sequences and query them with both amino acid and nucleotide sequences, thus bringing sequence comparison to the biologically relevant protein level. MetaProFi implements additional efficient engineering solutions, such as a shared memory system, chunked data storage and efficient compression. In addition to its conceptual novelty, MetaProFi demonstrates state-of-the-art performance and excellent memory consumption-to-speed ratio when applied to various large datasets. AVAILABILITY AND IMPLEMENTATION: Source code in Python is available at https://github.com/kalininalab/metaprofi.


Subject(s)
Algorithms , Data Compression , Base Sequence , Software , Proteins
9.
J Chem Theory Comput ; 19(6): 1898-1907, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36853966

ABSTRACT

Molecular dynamics simulations have been widely used to study solute permeation across biological membranes. The potential of mean force (PMF) for solute permeation is typically computed using enhanced sampling techniques such as umbrella sampling (US). For bulky drug-like permeants, however, obtaining converged PMFs remains challenging and often requires long simulation times, resulting in an unacceptable computational cost. Here, we augmented US with simulated tempering (ST), an extended-ensemble technique that consists in varying the temperature of the system along a pre-defined temperature ladder. Simulated tempering-enhanced US (STeUS) was employed to improve the convergence of PMF calculations for the permeation of methanol and three common drug molecules. To obtain sufficient sampling of the umbrella histograms, which were computed only from the ground temperature, we modified the simulation time fraction spent at the ground temperature between 1/K and 50%, where K is the number of ST temperature states. We found that STeUS accelerates convergence, when compared to standard US, and that the benefit of STeUS is system-dependent. For bulky molecules, for which standard US poorly converged, the application of ST was highly successful, leading to a more than fivefold accelerated convergence of the PMFs. For the small methanol solute, for which conventional US converges moderately, the application of ST is only beneficial if 50% of the STeUS simulation time is spent at the ground temperature. This study establishes STeUS as an efficient and simple method for PMF calculations, thereby strongly reducing the computational cost of routine high-throughput studies of drug permeability.


Subject(s)
Methanol , Molecular Dynamics Simulation , Entropy , Solutions , Temperature
10.
J Chem Inf Model ; 62(20): 5023-5033, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36214845

ABSTRACT

Passive diffusion across biomembranes is an important mechanism of permeation for multiple drugs, including antibiotics. However, this process is frequently neglected while studying drug uptake and, in our view, warrants further investigation. Here, we apply molecular dynamics simulations to investigate the impact of changes in molecular hydrophobicity on the permeability of a series of inhibitors of the quorum sensing of Pseudomonas aeruginosa, previously discovered by us, across a membrane model. Overall, we show that permeation across this membrane model does not correlate with the molecule's hydrophobicity. We demonstrate that using a simple model for permeation, based on the difference between the maximum and minimum of the free energy profile, outperforms the inhomogeneous solubility-diffusion model, yielding a permeability ranking that better agrees with the experimental results, especially for hydrophobic permeants. The calculated differences in permeability could not explain differences in in bacterio activity. Nevertheless, substantial differences in molecular orientation along the permeation pathway correlate with the in bacterio activity, emphasizing the importance of analyzing, at an atomistic level, the permeation pathway of these solutes.


Subject(s)
Anti-Bacterial Agents , Molecular Dynamics Simulation , Solutions , Diffusion , Hydrophobic and Hydrophilic Interactions
11.
Gigascience ; 112022 09 20.
Article in English | MEDLINE | ID: mdl-36130085

ABSTRACT

BACKGROUND: Structural annotation of genetic variants in the context of intermolecular interactions and protein stability can shed light onto mechanisms of disease-related phenotypes. Three-dimensional structures of related proteins in complexes with other proteins, nucleic acids, or ligands enrich such functional interpretation, since intermolecular interactions are well conserved in evolution. RESULTS: We present d-StructMAn, a novel computational method that enables structural annotation of local genetic variants, such as single-nucleotide variants and in-frame indels, and implements it in a highly efficient and user-friendly tool provided as a Docker container. Using d-StructMAn, we annotated several very large sets of human genetic variants, including all variants from ClinVar and all amino acid positions in the human proteome. We were able to provide annotation for more than 46% of positions in the human proteome representing over 60% proteins. CONCLUSIONS: d-StructMAn is the first of its kind and a highly efficient tool for structural annotation of protein-coding genetic variation in the context of observed and potential intermolecular interactions. d-StructMAn is readily applicable to proteome-scale datasets and can be an instrumental building machine-learning tool for predicting genotype-to-phenotype relationships.


Subject(s)
Nucleic Acids , Proteome , Amino Acids , Genetic Variation , Humans , Molecular Sequence Annotation , Nucleotides
12.
Nutrients ; 14(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35807783

ABSTRACT

Recent studies showed that a low 25-hydroxyvitamin D (25(OH)D) level was associated with a higher risk of morbidity and severe course of COVID-19. Our study aimed to evaluate the effects of cholecalciferol supplementation on the clinical features and inflammatory markers in patients with COVID-19. A serum 25(OH)D level was determined in 311 COVID-19 patients. Among them, 129 patients were then randomized into two groups with similar concomitant medication. Group I (n = 56) received a bolus of cholecalciferol at a dose of 50,000 IU on the first and the eighth days of hospitalization. Patients from Group II (n = 54) did not receive the supplementation. We found significant differences between groups with the preferential increase in serum 25(OH)D level and Δ 25(OH)D in Group I on the ninth day of hospitalization (p < 0.001). The serum 25(OH)D level on the ninth day was negatively associated with the number of bed days (r = −0.23, p = 0.006); we did not observe other clinical benefits in patients receiving an oral bolus of cholecalciferol. Moreover, in Group I, neutrophil and lymphocyte counts were significantly higher (p = 0.04; p = 0.02), while the C-reactive protein level was significantly lower on the ninth day of hospitalization (p = 0.02). Patients with supplementation of 100,000 IU of cholecalciferol, compared to those without supplementation, showed a decrease in the frequencies of CD38++CD27 transitional and CD27−CD38+ mature naive B cells (p = 0.006 and p = 0.02) and an increase in the level of CD27−CD38− DN B cells (p = 0.02). Thus, the rise in serum 25(OH)D level caused by vitamin D supplementation in vitamin D insufficient and deficient patients may positively affect immune status and hence the course of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Vitamin D Deficiency , Biomarkers , Cholecalciferol , Dietary Supplements , Humans , Vitamin D
13.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35337103

ABSTRACT

A low 25-hydroxyvitamin D (25(OH)D) level is considered as an independent risk factor for COVID-19 severity. However, the association between vitamin D status and outcomes in COVID-19 is controversial. In the present study we investigate the association between the serum 25(OH)D level, immune response, and clinical disease course in patients with COVID-19. A total of 311 patients hospitalized with COVID-19 were enrolled. For patients with a vitamin D deficiency/insufficiency, the prevalence of severe COVID-19 was higher than in those with a normal 25(OH)D level (p < 0.001). The threshold of 25(OH)D level associated with mortality was 11.4 ng/mL (p = 0.003, ROC analysis). The frequency of CD3+CD4+ T helper (Th) cells was decreased in patients with 25(OH)D level ≤ 11.4 ng/mL, compared to healthy controls (HCs). There were no differences in the frequency of naive, central memory (CM), effector memory (EM), and terminally differentiated effector memory Th cells in patients with COVID-19 compared to HCs. The frequency of T-follicular helpers was decreased both in patients with 25(OH)D level > 11.4 ng/mL (p < 0.001) and 25(OH)D level ≤ 11.4 ng/mL (p = 0.003) compared to HCs. Patients with 25(OH)D level > 11.4 ng/mL had an increased frequency of Th2 CM (p = 0.010) and decreased Th17 CM (p < 0.001). While the frequency of Th2 EM was significantly increased, the frequency of Th17 EM was significantly decreased in both groups compared to HCs. Thus, 25(OH)D level is an independent risk factor for the disease severity and mortality in patients with COVID-19. We demonstrate that the serum 25(OH)D level ≤ 11.4 ng/mL is associated with the stimulation of Th2 and the downregulation of Th17 cell polarization of the adaptive immunity in patients with COVID-19.

14.
Nutrients ; 14(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35276863

ABSTRACT

In the last 2 years, observational studies have shown that a low 25-hydroxyvitamin D (25(OH)D) level affected the severity of infection with the novel coronavirus (COVID-19). This study aimed to analyze the potential effect of vitamin D supplementation in reducing SARS-CoV-2 infection morbidity and severity in health care workers. Of 128 health care workers, 91 (consisting of 38 medical doctors (42%), 38 nurses (42%), and 15 medical attendants (16%)) were randomized into two groups receiving vitamin D supplementation. Participants of group I (n = 45) received water-soluble cholecalciferol at a dose of 50,000 IU/week for 2 consecutive weeks, followed by 5000 IU/day for the rest of the study. Participants of group II (n = 46) received water-soluble cholecalciferol at a dose of 2000 IU/day. For both groups, treatment lasted 3 months. Baseline serum 25(OH)D level in health care workers varied from 3.0 to 65.1 ng/mL (median, 17.7 (interquartile range, 12.2; 24.7) ng/mL). Vitamin D deficiency, insufficiency, and normal vitamin D status were diagnosed in 60%, 30%, and 10%, respectively. Only 78 subjects completed the study. Vitamin D supplementation was associated with an increase in serum 25(OH)D level, but only intake of 5000 IU/day was accompanied by normalization of serum 25(OH)D level, which occurred in 53% of cases. Neither vitamin D intake nor vitamin D deficiency/insufficiency were associated with a decrease in SARS-CoV-2 morbidity (odds ratio = 2.27; 95% confidence interval, 0.72 to 7.12). However, subjects receiving high-dose vitamin D had only asymptomatic SARS-CoV-2 in 10 (26%) cases; at the same time, participants who received 2000 IU/day showed twice as many SARS-CoV-2 cases, with mild clinical features in half of them.


Subject(s)
COVID-19 , Dietary Supplements , Health Personnel , Humans , Morbidity , SARS-CoV-2 , Vitamin D
15.
PLoS Pathog ; 18(2): e1010310, 2022 02.
Article in English | MEDLINE | ID: mdl-35130329

ABSTRACT

Recent studies identified signal peptidase complex subunit 1 (SPCS1) as a proviral host factor for Flaviviridae viruses, including HCV. One of the SPCS1's roles in flavivirus propagation was attributed to its regulation of signal peptidase complex (SPC)-mediated processing of flavivirus polyprotein, especially C-prM junction. However, whether SPCS1 also regulates any SPC-mediated processing sites within HCV polyprotein remains unclear. In this study, we determined that loss of SPCS1 specifically impairs the HCV E2-p7 processing by the SPC. We also determined that efficient separation of E2 and p7, regardless of its dependence on SPC-mediated processing, leads to SPCS1 dispensable for HCV assembly These results suggest that SPCS1 regulates HCV assembly by facilitating the SPC-mediated processing of E2-p7 precursor. Structural modeling suggests that intrinsically delayed processing of the E2-p7 is likely caused by the structural rigidity of p7 N-terminal transmembrane helix-1 (p7/TM1/helix-1), which has mostly maintained membrane-embedded conformations during molecular dynamics (MD) simulations. E2-p7-processing-impairing p7 mutations narrowed the p7/TM1/helix-1 bending angle against the membrane, resulting in closer membrane embedment of the p7/TM1/helix-1 and less access of E2-p7 junction substrate to the catalytic site of the SPC, located well above the membrane in the ER lumen. Based on these results we propose that the key mechanism of action of SPCS1 in HCV assembly is to facilitate the E2-p7 processing by enhancing the E2-p7 junction site presentation to the SPC active site. By providing evidence that SPCS1 facilitates HCV assembly by regulating SPC-mediated cleavage of E2-p7 junction, equivalent to the previously established role of this protein in C-prM junction processing in flavivirus, this study establishes the common role of SPCS1 in Flaviviridae family virus propagation as to exquisitely regulate the SPC-mediated processing of specific, suboptimal target sites.


Subject(s)
Hepacivirus/metabolism , Hepatitis C/virology , Membrane Proteins/metabolism , Viral Envelope Proteins/metabolism , Viroporin Proteins/metabolism , Virus Assembly , Cell Line , HEK293 Cells , Host Microbial Interactions , Humans , Membrane Proteins/chemistry , Molecular Dynamics Simulation , Protein Conformation , Viral Envelope Proteins/chemistry , Viroporin Proteins/chemistry , Virus Replication
16.
PLoS Comput Biol ; 18(2): e1009878, 2022 02.
Article in English | MEDLINE | ID: mdl-35180226

ABSTRACT

Fitness conferred by the same allele may differ between genotypes and environments, and these differences shape variation and evolution. Changes in amino acid propensities at protein sites over the course of evolution have been inferred from sequence alignments statistically, but the existing methods are data-intensive and aggregate multiple sites. Here, we develop an approach to detect individual amino acids that confer different fitness in different groups of species from combined sequence and phylogenetic data. Using the fact that the probability of a substitution to an amino acid depends on its fitness, our method looks for amino acids such that substitutions to them occur more frequently in one group of lineages than in another. We validate our method using simulated evolution of a protein site under different scenarios and show that it has high specificity for a wide range of assumptions regarding the underlying changes in selection, while its sensitivity differs between scenarios. We apply our method to the env gene of two HIV-1 subtypes, A and B, and to the HA gene of two influenza A subtypes, H1 and H3, and show that the inferred fitness changes are consistent with the fitness differences observed in deep mutational scanning experiments. We find that changes in relative fitness of different amino acid variants within a site do not always trigger episodes of positive selection and therefore may not result in an overall increase in the frequency of substitutions, but can still be detected from changes in relative frequencies of different substitutions.


Subject(s)
Amino Acids , Influenza, Human , Amino Acid Substitution , Amino Acids/genetics , Evolution, Molecular , Humans , Influenza, Human/genetics , Phylogeny , Sequence Alignment
17.
J Biol Chem ; 297(3): 101031, 2021 09.
Article in English | MEDLINE | ID: mdl-34339738

ABSTRACT

The Q80K polymorphism in the NS3-4A protease of the hepatitis C virus is associated with treatment failure of direct-acting antiviral agents. This polymorphism is highly prevalent in genotype 1a infections and stably transmitted between hosts. Here, we investigated the underlying molecular mechanisms of evolutionarily conserved coevolving amino acids in NS3-Q80K and revealed potential implications of epistatic interactions in immune escape and variants persistence. Using purified protein, we characterized the impact of epistatic amino acid substitutions on the physicochemical properties and peptide cleavage kinetics of the NS3-Q80K protease. We found that Q80K destabilized the protease protein fold (p < 0.0001). Although NS3-Q80K showed reduced peptide substrate turnover (p < 0.0002), replicative fitness in an H77S.3 cell culture model of infection was not significantly inferior to the WT virus. Epistatic substitutions at residues 91 and 174 in NS3-Q80K stabilized the protein fold (p < 0.0001) and leveraged the WT protease stability. However, changes in protease stability inversely correlated with enzymatic activity. In infectious cell culture, these secondary substitutions were not associated with a gain of replicative fitness in NS3-Q80K variants. Using molecular dynamics, we observed that the total number of residue contacts in NS3-Q80K mutants correlated with protein folding stability. Changes in the number of contacts reflected the compensatory effect on protein folding instability by epistatic substitutions. In summary, epistatic substitutions in NS3-Q80K contribute to viral fitness by mechanisms not directly related to RNA replication. By compensating for protein-folding instability, epistatic interactions likely protect NS3-Q80K variants from immune cell recognition.


Subject(s)
Epistasis, Genetic , Hepacivirus/genetics , Hepatitis C/virology , Amino Acid Substitution , Genes, Viral , Humans , Molecular Dynamics Simulation , Mutation , Polymorphism, Genetic , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
18.
PLoS Comput Biol ; 17(4): e1008329, 2021 04.
Article in English | MEDLINE | ID: mdl-33826604

ABSTRACT

Tandem alternative splice sites (TASS) is a special class of alternative splicing events that are characterized by a close tandem arrangement of splice sites. Most TASS lack functional characterization and are believed to arise from splicing noise. Based on the RNA-seq data from the Genotype Tissue Expression project, we present an extended catalogue of TASS in healthy human tissues and analyze their tissue-specific expression. The expression of TASS is usually dominated by one major splice site (maSS), while the expression of minor splice sites (miSS) is at least an order of magnitude lower. Among 46k miSS with sufficient read support, 9k (20%) are significantly expressed above the expected noise level, and among them 2.5k are expressed tissue-specifically. We found significant correlations between tissue-specific expression of RNA-binding proteins (RBP), tissue-specific expression of miSS, and miSS response to RBP inactivation by shRNA. In combination with RBP profiling by eCLIP, this allowed prediction of novel cases of tissue-specific splicing regulation including a miSS in QKI mRNA that is likely regulated by PTBP1. The analysis of human primary cell transcriptomes suggested that both tissue-specific and cell-type-specific factors contribute to the regulation of miSS expression. More than 20% of tissue-specific miSS affect structured protein regions and may adjust protein-protein interactions or modify the stability of the protein core. The significantly expressed miSS evolve under the same selection pressure as maSS, while other miSS lack signatures of evolutionary selection and conservation. Using mixture models, we estimated that not more than 15% of maSS and not more than 54% of tissue-specific miSS are noisy, while the proportion of noisy splice sites among non-significantly expressed miSS is above 63%.


Subject(s)
Alternative Splicing , Transcriptome , Humans , RNA, Messenger/genetics
19.
Nucleic Acids Res ; 49(D1): D309-D318, 2021 01 08.
Article in English | MEDLINE | ID: mdl-32976589

ABSTRACT

Alternative splicing plays a major role in regulating the functional repertoire of the proteome. However, isoform-specific effects to protein-protein interactions (PPIs) are usually overlooked, making it impossible to judge the functional role of individual exons on a systems biology level. We overcome this barrier by integrating protein-protein interactions, domain-domain interactions and residue-level interactions information to lift exon expression analysis to a network level. Our user-friendly database DIGGER is available at https://exbio.wzw.tum.de/digger and allows users to seamlessly switch between isoform and exon-centric views of the interactome and to extract sub-networks of relevant isoforms, making it an essential resource for studying mechanistic consequences of alternative splicing.


Subject(s)
Alternative Splicing , Databases, Protein , Exons , Protein Interaction Mapping/methods , Proteome/chemistry , RNA, Messenger/genetics , Binding Sites , Computational Biology/methods , Humans , Internet , Models, Molecular , Protein Binding , Protein Biosynthesis , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Isoforms , Proteome/genetics , Proteome/metabolism , RNA, Messenger/metabolism , Software , Thermodynamics
20.
J Am Chem Soc ; 142(49): 20560-20565, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33249843

ABSTRACT

Bottromycins are ribosomally synthesized and post-translationally modified peptide natural product antibiotics that are effective against high-priority human pathogens such as methicillin-resistant Staphylococcus aureus. The total synthesis of bottromycins involves at least 17 steps, with a poor overall yield. Here, we report the characterization of the cytochrome P450 enzyme BotCYP from a bottromycin biosynthetic gene cluster. We determined the structure of a close BotCYP homolog and used our data to conduct the first large-scale survey of P450 enzymes associated with RiPP biosynthetic gene clusters. We demonstrate that BotCYP converts a C-terminal thiazoline to a thiazole via an oxidative decarboxylation reaction and provides stereochemical resolution for the pathway. Our data enable the two-pot in vitro production of the bottromycin core scaffold and may allow the rapid generation of bottromycin analogues for compound development.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Multigene Family , Oxidation-Reduction , Peptides, Cyclic/biosynthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Protein Processing, Post-Translational , Stereoisomerism , Thiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...